

数学 IIB

オンライン数学 テキスト§1

1

正方形 ABCD の頂点 B と辺 CD 上の点 E を線分で結んだとき、 \angle EBC = 18°、BE = 1 である。

この正方形 ABCD の面積の値を求めよ。

 $0 \le x < 2\pi$ とするとき、不等式 $\sin x - \sqrt{3}\cos x < 0$ を解きなさい。

関数

$$f(\theta) = \frac{1}{\sqrt{2}} \sin 2\theta - \sin \theta + \cos \theta \ (0 \le \theta \le \pi)$$
 を考える。

- (1) $t = \sin \theta \cos \theta$ とおく。 $f(\theta)$ を t の式で表せ。
- $(2) f(\theta)$ の最大値と最小値、およびそのときの θ の値を求めよ。

オンライン数学 テキスト§2

1

a>1 とする。 $1\leq x\leq a$ における関数 $y=2x^3-9x^2+12x-2$ の最小値を m(a),最大値を M(a) とするとき,次の問いに答えよ。

- (1) m(a) を求めよ。
- (2) *M*(*a*) を求めよ。

関数 $f(x) = x^3 - 3x$ を考える。曲線 C: y = f(x) 上の点 A(t, f(t)) における接線を L とする。ただし、0 < t < 1 とする。

曲線Cと接線Lの接点A以外の共有点をBとする。以下の問いに答えよ。

- (1) 点 B の座標を *t* を用いて表せ。
- (2) 2点 A, Bの y 座標の差の絶対値が最大となる t の値を求めよ。

- 3次関数 $f(x) = x^3 + 3x^2 2$ がある。a を定数として以下の設問に答えよ。
- (1) y = f(x) 上の点 (a, f(a)) における接線が (1, -2) を通るような a の値をすべて求めよ。
- (2) 直線 y = k(x-1) 2 と曲線 y = f(x) が相異なる 3 点で交わるような実数 k の値の範囲を求めよ。

オンライン数学 テキスト§3

1

座標平面上の曲線 $C: y = x^2$ と C 上の点 $P(a, a^2)$ について、次の問いに答えよ。ただし、a>0 とする。

- (1) 点 P における接線を l とする。l が曲線 C' : $y=(x+b)^2-b^2$ に接しているとする。 その接点を Q としたとき,b および点 Q の座標を a を用いて表せ。ただし, $b \neq 0$ とする。
- (2)(1)のとき、曲線 C, C' および直線 l で囲まれた図形の面積を a を用いて表せ。

a を実数とし, $f(x)=x-x^3$, $g(x)=a(x-x^2)$ とする。 2 つの曲線 y=f(x), y=g(x) は 0 < x < 1 の範囲に共有点を持つ。

- (1) aの取りうる値の範囲を求めよ。
- (2) y=f(x) と y=g(x) で囲まれた 2 つの部分の面積が等しくなるような a の値を求めよ。

- (1) 関数 y = f(x) のグラフをかけ。
- (2) 曲線 y = f(x)と x 軸で囲まれた図形の面積を求めよ。

オンライン数学 テキスト§4

1

数列 $\{a_n\}$ は,

$$a_1 = 1$$
, $a_2 = 2$, $a_{n+2} - 2a_{n+1} - 3a_n = 0$ $(n = 1, 2, 3, \cdots)$

を満たすとし、数列 $\{b_n\}$, $\{c_n\}$ を

$$b_n = a_{n+1} + a_n$$

$$c_n = a_{n+1} - 3a_n$$

と定める。自然数nに対して、以下の問いに答えよ。

- (1) b_{n+1} を b_n の式で表せ。
- (2) c_{n+1} を c_n の式で表せ。
- (3) b_n と c_n をそれぞれnの式で表せ。
- (4) a_n を n の式で表せ。

次の条件により定められる数列の一般項 a_n を求めよ。

$$a_1 = 1$$
, $\left(1 + \frac{1}{n}\right)a_{n+1} = a_n + 3 \ (n = 1, 2, 3, \cdots)$

数列 $\{a_n\}$ を

$$a_1 = 1$$
, $a_{n+1} = 3a_n + 2n - 4$ $(n = 1, 2, 3\cdots)$

により定める。数列 $\{a_n\}$ の一般項を求めなさい。

オンライン数学 テキスト§5

1

平行四辺形 ABCD において,辺 BC,CD の中点をそれぞれ M,N とする。また,線分 AN と DM の交点を P とする。このとき \overrightarrow{AP} を \overrightarrow{AB} と \overrightarrow{AD} を用いて表せ。

1 辺の長さが 1 の正六角形 ABCDEF において,辺 CD を 1:3 に内分する点を P,辺 EF を 1:2 に内分する点を Q とし,線分 AP と線分 BQ の交点を R とする。

 $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AF} = \overrightarrow{b}$ とおくと、 $\overrightarrow{AP}, \overrightarrow{AR} \times \overrightarrow{a}, \overrightarrow{b}$ で表せ。

△ ABC の内部の点 P が

$$3\overrightarrow{AP} + 2\overrightarrow{BP} + 5\overrightarrow{CP} = \overrightarrow{0}$$

を満たしている。直線 AP が辺 BC と交わる点を D とする。

 \overrightarrow{AP} を \overrightarrow{AD} の定数倍で表すと, \overrightarrow{AP} = \overrightarrow{AD} である。

さらに、直線 BP が辺 CA と交わる点を E とするとき、四角形 PDCE の面積は \triangle ABC の何倍か。